Sonderdruck aus

Archiv der Mathematik

On *f*-injective modules

By

Maher Zayed

Abstract. In this paper, the notions of f-injective and f^* -injective modules are indroduced. Elementary properties of these modules are given. For instance, a ring R is coherent iff any ultraproduct of f-injective modules is absolutaly pure. We prove that the class \sum^* of f^* -injective modules is closed under ultraproducts. On the other hand, \sum^* is not axiomatisable. For coherent rings R, \sum^* is axiomatisable iff every χ_0 -injective module is f^* -injective. Further, it is shown that the class \sum of f-injective modules is axiomatisable iff R is coherent and every χ_0 -injective module is f-injective. Finally, an f-injective module H, such that every module embeds in an ultraprover of H, is given.

1. Introduction. In [3], Eklof and Sabbagh introduced the notion of α -injective module. For a cardinal $\alpha \ge 2$, a module *X* over a ring *R* is α -injective if for every ideal *I* having a generating subset of less than α elements, any homomorphism of *I* into *X* can be extended to a homomorphism of *R* into *X*. In this paper, the notions of *f*-injective and *f**-injective modules are introduced. An *R*-module *X* is said to be *f*-injective (resp. *f**-injective) if given any monomorphism $F \to Y$, where *F* is a finitely generated (resp. finitely presented) module, any homomorphism $F \to X$ can be extended to a homomorphism $Y \to X$.

Note that every *f*-injective is χ_0 -injective and the converse is not generally true (Remark 3.4).

Elementary properties of these modules are given. For instance, a ring *R* is coherent if and only if any ultraproduct of *f*-injective modules is absolutely pure. We prove that the class \sum^* of f^* -injective modules is closed under ultraproducts. On the other hand, \sum^* is not axiomatisable. For coherent rings R, \sum^* is axiomatisable if and only if every χ_0 -injective module is f^* -injective. Further, it is shown that the class \sum of *f*-injective modules is axiomatisable if and only if *R* is coherent and every χ_0 -injective module is *f*-injective. Finally, an *f*-injective module *H*, such that every module embeds in an ultrapower of *H*, is given.

2. Notation and preliminary results. Throughout this paper, *R* is an associative ring with identity and all modules are left unitary *R*-modules. The class of finitely generated *R*-modules is denoted by *f*. The subclass of *f* whose objects are the finitely presented modules in *f* is denoted by f^* . An *R*-module *X* is said to be *f*-*injective* (resp. f^* -*injective*) if for every monomorphism $f: F \to Y, F \in f$, (resp. $F \in f^*$), any homomorphism $g: F \to X$ can be extended to a homomorphism $h: Y \to X$; that is $g = h \circ f$.

Mathematics Subject Classification (2000): 16D70, 16D80, 12L10, 03C60.

- **Proposition 2.1.** (a) A direct product $\prod_{\alpha \in A} X_{\alpha}$ of modules is *f*-injective if and only if each X_{α} is f-injective.
- (b) If $X_0 \subset X_1 \subset ..., \subset X_\beta \subset ..., \beta \prec \alpha$ is a chain of *f*-injective modules, where α is an ordinal, then the union of the chain is *f*-injective.
- (c) Any direct sum of f-injective modules is f-injective.
- (d) Every module has a maximal f-injective submodule.
- (e) Every finitely generated (resp. finitely presented) f-injective (resp. f*-injective) module is injective.

Proof. Easy.

Corollary 2.2. A ring R is left noetherian if and only if every f-injective R-module is injective.

Proof. The 'only if' part follows from Baer's criterion of injectivity. The 'if' part follows from Proposition 2.1(c) and [1, Prop. 18.13].

Corollary 2.3. A ring R is semi-simple artinian if and only if every R-module is f-injective.

Proof. Apply Proposition 2.1(e) and [8, Theorem].

3. Ultraproducts of f^* -injective modules. Let I be a nonempty set, $(X_i)_{i \in I}$ be a family of *R*-modules and u be an ultrafilter on *I*. The ultraproduct of this family with respect to u is denoted by $\prod_u X_i$. If $X_i = X$ for all $i \in I$, the ultraproduct is denoted by X^I/u and is called the ultrapower of X. For the basic concepts of model theory and the main properties of ultraproducts of algebraic structures we refer to [2] and [6]. Let X and Y be two modules over R. X and Y are called elementarily equivalent (notation: $X \equiv Y$) if X and Y satisfy the same first order sentences in the language of modules over R. A class K of R-modules is called axiomatisable if there exists a family of first order sentences in the language of modules over R such that K consists exactly of the modules satisfying these first order sentence. Let \sum (resp. \sum^*) be the class of all *f*-injective (resp. *f**-injective) *R*-modules. If Γ denotes the class of injective *R*-modules, then $\Gamma \subseteq \sum \subseteq \sum^*$. Note that if *R* is left coherent, then every f^* -injective *R*-module is χ_0 -injective.

Proposition 3.1. \sum^* *is closed under ultraproducts.*

Proof. Let $(X_i)_{i \in I}$ be a family of f^* -injective modules and u be a non-principal ultrafilter on *I*. Let $F \in f^*$ and consider the following diagram:

Since *F* is finitely presented, so there exist a set $\Omega \in u$ and a homomorphism $\lambda : F \to \prod_{i \in \Omega} X_i$, such that $g = \Phi \circ \lambda$ where $\Phi : \prod_{i \in \Omega} X_i \to \Pi_u X_i$ is the canonical homomorphism [5].

Note that $\prod_{i\in\Omega} X_i \in \sum^*$, so there exists $h: Y \to \prod_{i\in\Omega} X_i$ such that $h \circ f = \lambda$. Now, if $\gamma = \Phi \circ h: Y \to \prod_u X_i$, then $\gamma \circ f = \Phi \circ h \circ f = \Phi \circ \lambda = g$. This means that $\prod_u X_i$ belongs to \sum^* .

346

Corollary 3.2. Any ultraproduct of f-injective (resp. injective) R-modules is f*-injective.

Corollary 3.3. \sum^* is elementarily closed if and only if \sum^* is closed under elementary descent.

Proof. The 'only if' part is obvious. The 'if' part follows from Frayne's Lemma [2, Ch. 8, Lemma 1.1] and Proposition 3.1.

R e m a r k 3.4. Let V be an infinite dimensional vector space over a division ring D and $R = End(V_D)$. The ring R is von Neumann regular. Further R is not left self-injective. In fact *R* has a primitive idempotent *e* such that M = Re is not injective [1, Ex. 18.4].

Observe that *M* is χ_0 -injective and by Proposition 2.1(e), $M \notin \sum^*$.

Let E(M) be the pure-injective envelope of M. Since R is regular, E(M) is injective and so $E(M) \in \sum^*$. Note that $M \equiv E(M)$ [9]. Hence, in general, the class \sum^* is not elementarily closed. It follows from [2, Ch. 7. Theorem 3.4], that \sum^* is not an axiomatisable class.

We do not know for what rings the f^* -injective modules form an axiomatisable class. However, for coherent rings, one easily obtains the following result.

Proposition 3.5. Let R be a left coherent ring and \sum_0 be the class of all χ_0 -injective *R*-modules. Then \sum^* is axiomatisable if and only if $\sum_0 = \sum^*$.

Proof. Suppose that \sum^* is axiomatisable and $X \in \sum_0$. By Lemma 3.17 of [3], X is an elementary submodule of an injective module I.

Since $I \in \sum^*$, then $X \in \sum^*$. The converse results from [3, Theorem 3.16].

Corollary 3.6. For a regular ring R, \sum^* is axiomatisable if and only if every R-module is f*-injective.

4. Ultraproducts of f-injective modules. In this section, we show that, if \sum is axiomatisable, then R is left coherent. It follows from the preceding remark that the converse is not generally true. However, a"converse' of this result will be proved.

Proposition 4.1. The following assertions are equivalent:

- (i) ∑ is closed under ultraproducts.
 (ii) ∑ is closed under ultrapowers.

Proof. The implication (i) \Rightarrow (ii) is obvious. To show that (ii) \Rightarrow (i), let $(X_i)_{i \in I}$ be a family of f-injective modules and u be a non-principal ultrafilter over I. By [3, Remark p. 261], the *R*-module $\prod_{u} X_i$ is a direct summand of an ultra-power of the direct product of the family $(X_i)_{i \in I}$. The result follows from Proposition 2.1.

We recall that an *R*-module *M* is called absolutely pure (or *f* p-injective) if each short exact sequence $0 \to M \to A \to B \to 0$ of *R*-modules is pure-exact. It is an equivalent assertion that every R-linear map $f: U \to M$, where U is a finitely generated submodule of a finitely generated free module F, admits an extension to F. Of course, every f-injective R-module is absolutely pure.

Proposition 4.2. The following conditions are equivalent:

(i) *R* is left coherent.

(ii) Any ultraproduct of f-injective R-modules is absolutely pure.

(iii) Any ultrapower of f-injective R-module is absolutely pure.

Proof. (i) \Rightarrow (ii) follows from [9, Theorem 2]. and (ii) \Rightarrow (iii) is obvious. So, it remains to show (iii) \Rightarrow (i). Let $(X_i)_{i \in I}$ be a family of injective *R*-modules and *u* be a non-principal ultrafilter on *I*. The direct product $X = \prod_{i \in I} X_i$ is *f*-injective. Under the hypothesis (iii), any ultrapower of *X* is absolutely pure. Note that any direct summand of an absolutely pure module is absolutely pure [7]. So, the ultraproduct $\prod_u X_i$ (which is a summand of an ultrapower of *X*) is absolutely pure. Now, *R* is left coherent follows from Theorem 2 of [9].

Corollary 4.3. We consider the following assertions:

(i) ∑ is axiomatisable.
(ii) ∑ is elementarily closed.
(iii) ∑ is closed under ultraproducts.
(iv) R is left coherent.

Then (i) \iff (ii) \Rightarrow (iii) \Rightarrow (iv).

The proof of Proposition 3.5 can be easily modified to yield the following:

Proposition 4.4. For a ring R, the class \sum is axiomatisable if and only if R is left coherent and $\sum_{0} = \sum$.

Corollary 4.5. For a regular ring R, \sum is axiomatisable if and only if R is semisimple artinian.

Proposition 4.6. For any ring *R*, there is an *f*-injective *R*-module *H*, such that every module embeds in an ultrapower of H.

Proof. Let $H = \bigoplus \{I(M) : M \text{ is finitely generated}\}$, where I(M) is the injective envelope of M. Let X be any module and $\{B_j : j \in J\}$ be the set of all finitely generated submodules of X. For each $j \in J$. B_j is embedded in $I(B_j)$. So, there exists an embedding $f_j : B_j \to H$, For each $j \in J$. By [4, Theorem 6.1], there is an ultrafilter u on J and an embedding of X into the ultrapower H^J/u of H. observe that H is f-injective.

A c k n o w l e d g e m e n t. The auther would like to thank the referee for his useful suggestions.

References

- F. W. ANDERSON and K. R. FULLER, Rings and Categories of Modules. Berlin-Heidelberg-New York 1974.
- [2] J. L. BELL and A. B. SLOMSON, Models and Ultraproducts. Amsterdam 1974.
- [3] P. C. EKLOF and G. SABBAGH, Model-Completions and Modules. Ann. Math. Logic 2, 251–295 (1971).

348

Vol. 78, 2002

- [4] P. C. EKLOF, Ultraproducts for Algebraists. In: Handbook of Mathematical Logic. J. Barwise, ed.. Amsterdam 1977.
- [5] S. FAKIR et L. HADDAD, Objects cohérent et ultraproduits dans les catégories. J. Algebra 21, 410– 421 (1972).
- [6] C. U. JENSEN and H. LENZING, Model theoretic algebra with particular emphasis on fields, rings, modules and finite dimensional algebras. New York 1989.
- [7] B. H. MADDOX, Absolutely pure modules. Proc. Amer. Math. Soc. 18, 155-158 (1967).
- [8] B. L. OSOFSKY, Rings all of whose finitely generated modules are injectives. Pacific J. Math. 14, 645–650 (1964).
- [9] G. SABBAGH, Aspects logiques de la purete dans les modules. C. R. Acad. Sci. Paris 271, 909–912 (1970).

Eingegangen am 12. 7. 2000

Anschrift des Autors:

Maher Zayed Department of Mathematics Faculty of Science, University of Banha Banha 13518, Egypt